63 research outputs found

    Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    Get PDF
    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and SRTM data is well suited for vegetation 3-D mapping on a continental scale

    Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR

    Get PDF
    A new method for flood detection change detection and thresholding (CDAT) was used with synthetic aperture radar (SAR) imagery to delineate the extent of flooding for the Chobe floodplain in the Caprivi region of Namibia. This region experiences annual seasonal flooding and has seen a recent renewal of severe flooding after a long dry period in the 1990s. Flooding in this area has caused loss of life and livelihoods for the surrounding communities and has caught the attention of disaster relief agencies. There is a need for flood extent mapping techniques that can be used to process images quickly, providing near real-time flooding information to relief agencies. ENVISAT/ASAR and Radarsat-2 images were acquired for several flooding seasons from February 2008 to March 2013. The CDAT method was used to determine flooding from these images and includes the use of image subtraction, decision based classification with threshold values, and segmentation of SAR images. The total extent of flooding determined for 2009, 2011 and 2012 was about 542 km2, 720 km2, and 673 km2 respectively. Pixels determined to be flooded in vegetation were typically <0.5 % of the entire scene, with the exception of 2009 where the detection of flooding in vegetation was much greater (almost one third of the total flooded area). The time to maximum flooding for the 2013 flood season was determined to be about 27 days. Landsat water classification was used to compare the results from the new CDAT with SAR method; the results show good spatial agreement with Landsat scenes

    Mapping Mangrove Extent and Change: A Globally Applicable Approach

    Get PDF
    This study demonstrates a globally applicable method for monitoring mangrove forest extent at high spatial resolution. A 2010 mangrove baseline was classified for 16 study areas using a combination of ALOS PALSAR and Landsat composite imagery within a random forests classifier. A novel map-to-image change method was used to detect annual and decadal changes in extent using ALOS PALSAR/JERS-1 imagery. The map-to-image method presented makes fewer assumptions of the data than existing methods, is less sensitive to variation between scenes due to environmental factors (e.g., tide or soil moisture) and is able to automatically identify a change threshold. Change maps were derived from the 2010 baseline to 1996 using JERS-1 SAR and to 2007, 2008 and 2009 using ALOS PALSAR. This study demonstrated results for 16 known hotspots of mangrove change distributed globally, with a total mangrove area of 2,529,760 ha. The method was demonstrated to have accuracies consistently in excess of 90% (overall accuracy: 92.293.3%, kappa: 0.86) for mapping baseline extent. The accuracies of the change maps were more variable and were dependent upon the time period between images and number of change features. Total change from 1996 to 2010 was 204,850 ha (127,990 ha gain, 76,860 ha loss), with the highest gains observed in French Guiana (15,570 ha) and the highest losses observed in East Kalimantan, Indonesia (23,003 ha). Changes in mangrove extent were the consequence of both natural and anthropogenic drivers, yielding net increases or decreases in extent dependent upon the study site. These updated maps are of importance to the mangrove research community, particularly as the continual updating of the baseline with currently available and anticipated spaceborne sensors. It is recommended that mangrove baselines are updated on at least a 5-year interval to suit the requirements of policy makers

    Polarimetric SAR Interferometry Evaluation in Mangroves

    Get PDF
    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data)

    Forest Structure Retrieval from Ecosar P-Band Single-Pass Interferometry

    Get PDF
    EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques

    Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry

    Get PDF
    EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques

    Mapping Mangrove Extent and Change::A Globally Applicable Approach

    Get PDF
    This study demonstrates a globally applicable method for monitoring mangrove forest extent at high spatial resolution. A 2010 mangrove baseline was classified for 16 study areas using a combination of ALOS PALSAR and Landsat composite imagery within a random forests classifier. A novel map-to-image change method was used to detect annual and decadal changes in extent using ALOS PALSAR/JERS-1 imagery. The map-to-image method presented makes fewer assumptions of the data than existing methods, is less sensitive to variation between scenes due to environmental factors (e.g., tide or soil moisture) and is able to automatically identify a change threshold. Change maps were derived from the 2010 baseline to 1996 using JERS-1 SAR and to 2007, 2008 and 2009 using ALOS PALSAR. This study demonstrated results for 16 known hotspots of mangrove change distributed globally, with a total mangrove area of 2,529,760 ha. The method was demonstrated to have accuracies consistently in excess of 90% (overall accuracy: 92.2&ndash;93.3%, kappa: 0.86) for mapping baseline extent. The accuracies of the change maps were more variable and were dependent upon the time period between images and number of change features. Total change from 1996 to 2010 was 204,850 ha (127,990 ha gain, 76,860 ha loss), with the highest gains observed in French Guiana (15,570 ha) and the highest losses observed in East Kalimantan, Indonesia (23,003 ha). Changes in mangrove extent were the consequence of both natural and anthropogenic drivers, yielding net increases or decreases in extent dependent upon the study site. These updated maps are of importance to the mangrove research community, particularly as the continual updating of the baseline with currently available and anticipated spaceborne sensors. It is recommended that mangrove baselines are updated on at least a 5-year interval to suit the requirements of policy makers

    Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta

    Get PDF
    Mangroves are ecologically and economically important forested wetlands with the highest carbon (C) density of all terrestrial ecosystems. Because of their exceptionally large C stocks and importance as a coastal buffer, their protection and restoration has been proposed as effective mitigation strategy for climate change. The inclusion of mangroves in mitigation strategies requires the quantification of C stocks (both above and belowground) and changes to accurately calculate emissions and sequestration. A growing number of countries are becoming interested in using mitigation initiatives, such as REDD+, in these unique coastal forests. However, it is not yet clear how methods to measure C traditionally used for other ecosystems can be modified to estimate biomass in mangroves with the precision and accuracy needed for these initiatives. Airborne lidar (ALS) data has often been proposed as the most accurate way for larger-scale assessments but, the application of ALS for coastal wetlands is scarce, primarily due to a lack of contemporaneous ALS and field measurements. Here, we evaluated the variability in field and lidar-based estimates of aboveground biomass (AGB) through the combination of different local and regional allometric models and standardized height metrics that are comparable across spatial resolutions and sensor types. The end result being a simplified approach for accurately estimating mangrove AGB at large-scales and determining the uncertainty by combining multiple allometric models. We then quantified wall-to-wall aboveground biomass stocks of a tall mangrove forest in the Zambezi Delta, Mozambique. Our results indicate that the Lidar H100 height metric correlates well with AGB estimates, with R2 between 0.80 and 0.88 and RMSE of 33% or less. When comparing lidar H100 AGB derived from three allometric models, mean AGB values range from 192 Mg. ha-1 up to 252 Mg. ha-1. We suggest the best model to predict AGB was based on the East Africa specific allometry and a power based regression that used Lidar H100 as the height input with a R2 of 0.85 and a RMSE of 122 Mg.ha-1 or 33%. The total AGB of the lidar inventoried mangrove area (6654 ha) was 1,350,902 Mg with a mean AGB 203 Mg. ha-1. Because the allometry suggested here was developed using standardized height metrics, it is recommended that the models can generate AGB estimates using other remote sensing instruments that are more readily accessible over other mangrove ecosystems on a large scale, and as part of future carbon monitoring efforts in mangroves

    Measuring Mangrove Carbon Loss and Gain in Deltas

    Get PDF
    Demand for mangrove forest resources has led to a steady decline in mangrove area over the past century. Land conversions in the form of agriculture, aquaculture and urbanization account for much of the deforestation of mangrove wetlands. However, natural processes at the transition zone between land and ocean can also rapidly change mangrove spread. In this study, we applied a robust field-based carbon inventory and new structural and temporal remote sensing techniques to quantify the magnitude and change of mangrove carbon stocks in major deltas across Africa and Asia. From 20002016, approximately 1.6% (12 270 ha) of the total mangrove area within these deltas disappeared, primarily through erosion and conversion to agriculture. However, the rapid expansion of mangroves in some regions during this same period resulted in new forests that were taller and more carbon-dense than the deforested areas. Because of the rapid vertical growth rates and horizontal expansion, new mangrove forests were able to offset the total carbon losses of 5 332 843 Mg C by 44%. Each hectare of new mangrove forest accounted for 84% to 160% of the aboveground carbon for each hectare of mangrove forest lost, regardless of the net change in mangrove area. Our study highlights the significance of the natural dynamics of erosion and sedimentation on carbon loss and sequestration potential for mangroves over time. Areas of naturally regenerating mangroves will have a much larger carbon sequestration potential if the rate of mangrove deforestation of taller forests is curbed

    Estimating mangrove canopy height and above-ground biomass in the Everglades National Park with airborne LiDAR and TanDEM-X data

    Get PDF
    Mangrove forests are important natural ecosystems due to their ability to capture and store large amounts of carbon. Forest structural parameters, such as canopy height and above-ground biomass (AGB), provide a good measure for monitoring temporal changes in carbon content. The protected coastal mangrove forest of the Everglades National Park (ENP) provides an ideal location for studying these processes, as harmful human activities are minimal. We estimated mangrove canopy height and AGB in the ENP using Airborne LiDAR/Laser (ALS) and TanDEM-X (TDX) datasets acquired between 2011 and 2013. Analysis of both datasets revealed that mangrove canopy height can reach up to ~25 m and AGB can reach up to ~250 Mg·ha-1. In general, mangroves ranging from 9 m to 12 m in stature dominate the forest canopy. The comparison of ALS and TDX canopy height observations yielded an R2 = 0.85 and Root Mean Square Error (RMSE) = 1.96 m. Compared to a previous study based on data acquired during 2000-2004, our analysis shows an increase in mangrove stature and AGB, suggesting that ENP mangrove forests are continuing to accumulate biomass. Our results suggest that ENP mangrove forests have managed to recover from natural disturbances, such as HurricaneWilma
    corecore